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1.

[15pts] The goal of this problem is to derive the equations of motion for the cart-
pendulum system depicted in Figure 1 using the Euler-Lagrange equations of mo-
tion. The generalized coordinate of the system is ¢ = (p,6) and the generalized
velocity is ¢ = (p, 6).

To the end of obtaining these equations of motion, answer the following questions:

(a)

(2)

[2pts] Write the horizontal position z; and the vertical position z5 of the mass
m in terms of p, [, 0 and use it to obtain the position vector x € R? of the mass
m.

[2pts| Take the derivative of both components of x to obtain the velocity vector
1 € R2

[2pts] Write down the total kinetic co-energy T (¢,q) = sma i of the mass
m.

[2pts] Write down the total kinetic co-energy of the system by summing up
the translational kinetic co-energy T.5(¢) of the cart, the total kinetic co-energy
T7 (4) of the mass m and the rotational kinetic co-energy of the pendulum. To
write the latter term, denote the moment of inertia of the pendulum by J.
Hint For this and the remaining questions of the problem, if you did not answer
question (c), then use the expression

1 . .
Th(q,4) = 5(61}52 + b0%) + ccos 00 p,

where a, b, c are suitable constants.
[1 pt] Determine the vector 7 of external generalized forces.

[1 pt] Bearing in mind that the potential energy of the system stored in the
mass m and due to the work of the gravity force is

V(q) = mgl(cos@ + 1),

determine the Lagrangian function L(q, q).

[5 pts] Use the Euler-Lagrange equations of motion, to determine a dynamic
model of the pendulum-cart system.

(a) From the figure, the horizontal position is given by p —Isin# [0.75pts], and

(b) The velocity vector of the mass m is given by

the vertical position by [cos@ [0.75pts]. Hence, the position vector of the
mass m is given by

(0.5 pts] = = [p N lsm@]

lcosf

. p—lcostf
1+ 1pts] & = { Y }




(c) Cart—pendulum system

Figure 1: From Astrom-Murray, p. 25.

(¢) The total kinetic co-energy T3 (¢, ¢) = 3mi’d of the mass m is given by
1 1 . .
Tr(q,q) = §mm'Tx' = §m[(p —lcosf 0)* + (—Isind 6)%] [1pt]
After some manipulations we obtain
Ti(q,q) = im[p?+1%cos?0 ()% — 2l cosf 0 p+ sin? 0 (0)?

. . 1pt
= im[p* 4+ 12 62 — 2l cosf 0 p] [1pt]

(d) We have T (¢) = $Mp* [0.75 pt], the rotational kinetic co-energy of the
pendulum 1.J 62 [0.75 pt], and the total kinetic co-energy

1 1 . . 1 .
0.5pt] T*(q,q4) = =Mp* + =m[p* + 1> 0> — 2l cos 0 0 p| + = JO*
2 2 2

(e) [2pts] 7= (0 F)T.
(f) [ipt] L(gq,q) = S Mp? + Im[p? +12 62 — 2l cos 0 0 p| + 1 J0* —mgl(cos O+ 1).

(g) [L.5pts] '
oL  [(M 4+ m)p — mlcos 99]

g |ml20 — micosbp+ JO

Hence
1.5pts] doL _ [(M +m)p —mi(— sin 0)0% — ml cos“9(.9'
P oq | mi*0+mlsin00p — mlcosOp + JO
Also i
oL _ ! [1pt]
Oq  |mlsin@0p+ mglsinf p

and overall
dor _or _ |(MA4m)p—mi(— sin 0)62 — ml cos@é _ 0
dt oy  bg ml?0 + ml sin 00p — ml cos 0p + JO ml sin 00p + m
(M +m)p —ml(—sin0)0> —micos0d| _ |F [1pt]
ml*0 — mlcos@p + JO —mglsind | |0 P

yl sin 9}




The latter can also be written as

M+m —mlcosf
—mlcos@ J+ml?

Ji]

ml sin 662
—mgl sin

-

F
0

|

which is precisely equation (2.9) in the textbook when one neglects the

friction (¢ =0, v = 0).




2. [15pts| [Textbook, Exercise 3.10, revised] (Fisheries management)' The dynam-
ics of commercial fishery can be described by the following equations

i = ro(l— E) —azu = f(x,u) (1)

y = baru — cu = h(x,u)

where:

r € R is the total biomass;

u € R is the control input;

y € R is the rate of revenue;
a,b,c, k,r are positive constants;

re(l — %) is the biomass growth rate;

axu is the harvesting rate.

Answer the following questions:

(a)
(b)

[3.5pts] Given a constant input u., determine all the equilibria z. of the system.
For the non-zero equilibrium, calculate the corresponding rate of revenue y..

[2.5pts] Determine the value of u,. that gives the maximum rate of revenue.
Then determine the corresponding equilibrium state x..
Hint To answer this question remember that the maximum of a parabola
az? + Bz + v with o < 0 is achieved at zpa.x = —% and is equal to —% + 7.

[3pts| Design the constant input u, such that the resulting non-zero equilibrium
as determined in Question (a) is given by x, = 5.

[3pts] Linearize the dynamics of the fishery around the equilibrium pair?
(e, ue). Then specialize the answer to the case in which (z.,u.) are those
determined in Question (b). If you did not answer Question (b), then set
($€7u€> = (ﬁ? %)

[3pts] For the linearized system obtained in Question (d), namely

dr = Az + Béu
oy = Coxr+ Dou

set du = 0 (this corresponds to set u = u.). Determine whether the origin
of the resulting system is asymptotically stable, stable or unstable. Do the
solution of the original nonlinear system (1) that starts sufficiently close to the
equilibrium z. converge to it? Explain.

[3pts] (Bonus) For the linearized system obtained in Question (d), namely

dr = Az + Béu
oy = Coxr+ Dou

compute the output response from an initial condition z(0) = 1 and under a
step input du(t) = 1.

IThe textbook is not necessary for the resolution of this problem.
2Here (z.,u.) are constants, without a specific numeric value, thus you can answer this question even
if you did not solve the previous questions.



(a) Solve the equation

[Ipt] 0 = f(xe,ue) = rae(l — E) — AT Up.

k
This is a second-order equation of the form
2 2
re
0=rz, — 76 — AT U, = — ke + z.(r — au,)
There are two equilibria
ka
[Ipt] z. =0, z.=k— —u,
r

Correspondingly

2
[0.5pt] y. = ba (k — @ue) Ue — CUe = _ka bug + (bak — ¢)ue.
r r

g (bak —c)r
1. =—— = —
[1-5pts] tteman 2a 2kab
ka bak —c  bak +c
Ipt maX:k__emax:k_ = .
[pt] . r 2ab 2ab
(c) Set
ka c
k— —u.=x.=— [1.5pt
r e = ab [15pts]
and solve for u, to obtain
(kab — o)r
Ue = W [15pt8]
(d) We have
2
[0.75pts] or =r— —rxe — au,, or = —aw,
ox k ou
0.75pts] 2 = baw,, 2 = bag, -
75pts] o = bave, o~ =baze —c
Hence
2r bak + ¢ (bak — c)r r(c + abk)
A= r—— —a = —
k  2ab 2ka?b 2kab
5 _ bak +c¢  bak +c
- 2ab 2D
[1.5pts] (bak‘a— or  (bak —o)r
C = ba =
2ka?b 2ka
bak + c bak —c
D = —c=
2 2
Answer starting from the hint:
2 = r—2t g% =r(l— )
i
[1.5pts] C = bt —o
D = abs —c=0




(e) The linearized system is

— _ r(c+abk) bak + ¢
ox = Adxr+ Bou=— kb oxr — 5%

(bak — c)r bak — ¢
ke TR

ou

oy = Céxr+ Dou= ou

[1.5pts| Since all the parameters r, ¢, a, b, k are positive, then the (1 x 1)
matrix A is Hurwitz and the origin of the system is asymptotically stable.
[1.5pts] All the solution that start sufficiently close to the equilibrium state
x. will converge to x..

(f) The output response of the system is given by

_r(c+ abk)
Sy(t) = U%9re  2kab  x(0)+
[1.5pts] ! (bak — 0 r(c+ abk) (t—1)  bak+
ak —c)r ————F— (=7 ak + ¢
~ 7 2kab —
/0 ST a ( 5 You(T)dr

Replacing the numerical values of d2(0), du(t) and integrating, we obtain

r(c+ abk)
b(bak — ¢) r(c+abk) 1)5%’5],

PS] gy 0 crah) LT T 2k




3. [10pts] Consider the normalized turbine-governor dynamics of a synchronous gen-
erator given by

. -1 1 0
T = A:c—l—Bu—{ 0 _11:6—1—{1}71

y = C’x:[l O}x

(2)

where 1 € R is the mechanical power produced by the generator, zo € R is another
physical variable, and u € R is the control input.

()

(b)
(c)
(d)

(f)
(2)
(h)

[1pt] Determine the reachability matrix W, and discuss whether the system is
reachable or not.

[1pt] Determine the reachable canonical form of the state space equation.
[1pt] Determine the reachability matrix W, of the reachable canonical form.

[1pt] Using Table 6.1 of your textbook, determine the eigenvalues for which
the output step response of the system (2) in closed-loop system with the state
feedback u = —Kx + k,r has an overshoot M, = 4% and a 2% settling time of
11.8 units of time.

[2pts] Determine the gain matrix K such that the eigenvalues of A — BK
are equal to the eigenvalues determined in Question (d). Write explicitly the
feedback u = —Kz + k,r which guarantees the closed-loop system to have
the eigenvalues at the desired location and its output response to converge
asymptotically to r.

Hint If you did not answer Question (d), then assign the eigenvalues {—2, —2}.

[1pt] Determine the observability matrix W, of system (2) and discuss whether
the system is observable or not.

[Ipt] Write the observable canonical form and compute the observability ma-
trix W, of the system in observable canonical form.

[2pts] Determine the observer gain L designed according to Theorem 7.2.
Namely, determine the gain L that makes the characteristic polynomial of
A — LC to coincide with the polynomial (s + 5)2.

[3pts] (Bonus) Give the explicit expression of the matrices F, G, H, K, J of
the dynamical controller

~

T = Frx+Gy+ Hr
u = Kz+Jr

that assigns the characteristic polynomial det(s/ — A+ BK)-det(s] — A+ LC')
and that guarantees the output response of the closed-loop system to converge
asymptotically to r.

[0.5pts] W, = ( 1 —1 ) ; [0.5pts] det W, = —1# 0 system is reachable




(b)
det(s] —A) = (s +1)? = s>+ 25+ 1 =: s> + a5 + ay [0.5pts]

hence ) . )
[0.5pts] 2 = {1 O]Z—I—{O}u

~ 1 -2
[1pt]WT:{0 1]
(d) ¢ = \/ig, % =11.8 = wy = 1; desired characteristic polynomial:

[0.5pts] s + 2Cwps + wp = 8% + 2—2—3 +-=s

Eigenvalues

[0.5pts] s1_0 = ( = — =

b= A= BR) B

Hence

(A— BK)™' = [




1 1 3
[1pt] k. = — =+ .

oy [ M) o

Alternative Assigning —2 twice instead yields s® + 4s + 4, so py o = 4, 4.

K = (4-2 44)(2} _12>(1 (1))
[1pt] — (2 3)(—11(1))

- (1 2)

(A= BE)™ = {_01 _11}—{(1]][1 2}:1

[Ipt] &k, = — =4

(f) Wo = { _11 (1) } [0.5 pts]; det Wy =1 # 0 observable [0.5 pts]

. [ -21 i Lo
T =107 [05ptsy Wy = { }[0.5 pts]
-2 1
Yy = [1 O}Z
(h)
I = W—IWO p1—ax :|
0 P2 — a2
(s+5)?=5"4+10s+25 = s* + p1S + po [1 pt]
4 [1o
Wo _[1 1

SIS E S (P R

{:f: = Ai+Bu+Ly—Ci) __

[ipt] u = —Kz+ k,r
& = At — BK#+ Bkor+ Ly —C2) = (A— BK — LC)3 + Ly +
u = —Kz+kr

Bk, r

10



Hence

[2pts]

o = mOQ

11




r e u v n y
—=| F(s) C(s) 4%2)4 P(s) —éa

Figure 2: Negative feedback block diagram considered in Problem 4, with F(s) = 1.

4. [15 pts] Consider again the normalized turbine-governor dynamics of a synchronous
generator given by?

) -1 0
T = A:L"+B’LL—|: 0 _1]x+{ }V

n = Cx:[l O]:z:.

(a) [2pts] Determine the transfer function P(s) of the system.
(b) [2pts] Consider the negative feedback control system in Figure 2, with

Determine all the values of the gain k, such that the closed-loop system is
asymptotically stable.
1

Hint If you could not find any transfer function in (b) let P(s) = EoLE

(c) [2pts| Determine the transfer function G,.(s) from the reference r to the

output y and the steady state output response to a step reference input when
n=d=0.

(d) [2pts| For this question and the following one, let k, be a parameter (hence,
if you did not determine the values of k, in the previous question, you can
still answer these questions). Determine the transfer function G, (s) from the
noise n to the output y and the steady state output response to a step noise n
when r =d = 0.

(e) [2pts] Determine the transfer function Gy4(s) from the load disturbance d to
the output y and the steady state output response to a step load disturbance d
when r = n = 0. In this case the load disturbance models a non-zero frequency
deviation.

(f) [3pts] Consider now a PID controller

. /{31 + k:ps + ]deQ
p .

C(s)

3Notice that now the input is renamed as v and the output as 1 to be consistent with Figure 2.

12



Determine the parameters k,, k4, k; in such a way that the closed-loop system
transfer function G, (s) (with d = n = 0) has the denominator equal to

(8% 4+ 2¢wos + W) (s + a)

where a = 5Cwy.

(g) [2pts] Determine the steady state output response to a step load disturbance
d when the controller is a PID and when r = n = 0. Is the controller able to
guarantee the converge of y to r in spite of a constant frequency deviation d?

P(s)z(lO)(S+1 -1\ (0

0 s+1 1
1 s+1 1 0 1
O (o) (1) i
) kP(s) k k
s P
() = _ _ 1pt
Gur(s) 1+kP(s) k+(s+1)? s2+23+kp+1[p]
Closed-loop system asymptotically stable <= k, > —1. [1pt]
Alternative answer:
kP(s) k k
Gyr = b 1pt
(5) o o

T 1+ kP(s) k+(s+2)?2

Closed-loop system asymptotically stable <= k, > —4. [1pt]

(c)

kP
P— 1
Gr(s) 24254k, +1 [1pt]
k, r k,

Ysteady = 1im s r [Ipt] (it exists if k, > —1)

50 2425+ k,+1s ky+1

Alternative answer: Ygeady = %r.
(d) (5417
1 1 s+ 1
Gyn(s) = = = [1pt]
Y 1+ PC 1+(sj_p1)2 (s+1)2+k,
lim 5G,n () = G (0)7 = 7 [ipt]
iy 2Cinlo) = GO = g [
- . — (2?2 o4 o
Alternative answer: G, (s) = Get2y7rr,; hoise response is o,

13



P (s+1)?
Ga(s) = = = Ipt
yd( ) 14+ PC 14+ (sf—}i)_Q (S+ 1)2 —|—]€p [ p ]
| i S
Ysteady = }9111(1) SGyd(S)g = Gyd(o)d - kp I ]_d [1pt]
Alternative answer: G4(s) = m; disturbance response is ﬁci.
(f)
pPC k, + kpS + k’d82

r p—td p— 1t
Gur(s) 14+ PC ki + kps+ kgs? + s(s + 1)2 [1pt]

Hence, find k;, k,, kq so that

3+ (ka+2)s* + (ky + 1)s + k; = (s> + 2Cwos + wi) (s + a)

[1pt] =53+ (a + 2¢wp)s? + (w? + 2alwy)s +
kd—|—2=a+2éwo kd:a‘f'ZCwo—Q
[Ipt] { kp + 1 =w? + 2alwy ky, = w? 4+ 2alwy — 1
ki = aw? ki = aw?

Alternatively, the denominator of Gy, is k; + kps + kus* + s(s + 2)? =
ki + (44 ky)s + (4 + kq)s* + %, and we have

kqg+4=a+ 2wy kqg=a+ 2wy — 4
[1pt] 8 kp + 4 = w? + 2alwy k, = w? + 2alwy — 4
ki = aw? ki = aw?
(8)
P d. s
[1pt] Gya(s)

T1+PC mpne+dyd. (52 + 2Cwos + w2)(s +a)

d 0
[1pt] Ysteady = lim SGyd(s)g = 0; yes it does.

14



5.

[10pts] Consider a negative feedback system as in Figure 2, where the process
transfer function is

1

P(s) = GrIE

(a) [2pts]| Design a controller C'(s) with as little number of poles as possible such
that the closed-loop system has

i. a zero steady state error response to a step input and

ii. a constant egqqy steady state error response to a ramp input such that
|€steady‘ S 1.

(b) [2pts] Suppose that the resulting open-loop transfer function L(s) = C(s)P(s)
has the Bode diagrams represented in Figure 3. Using the detailed (magnified)
Bode diagrams in Figure 4, determine the gain crossover frequency wg. and the
phase ZL(iwge).

(c¢) [2pts] Using the Bode diagrams represented in Figure 3, qualitatively draw the
corresponding Nyquist plot. Determine whether the system is asymptotically
stable giving P, N, Z (P the number of poles of P(s) with positive real parts,
N the net number of clockwise encirclements of —1, Z the number of poles of
the closed-loop system with positive real parts). Explain.

(d) [2pts] Determine the phase margin.
(e) [2pts] Determine the gain margin.

(f) [4pts|] (Bonus) Suppose that a stricter specification is given, namely that
the constant steady state error response €sseqqy to a ramp input should satisfy
|esteady| < 0.1. How would you modify the previous controller to have the
new specification satisfied? Using the Bode diagram in Figure 3, specify what
would be the new gain cross-over frequency and the new (approximate) phase
margin and specify whether or not the system would be asymptotically stable.
If not, which controller would you use to stabilize the system while fulfilling
the new specification on the steady state?

1 s(s )
14+ PC O s(s+1)24+ k]

, s(s+1)2 r 1
Ipt stea, =1 ——— % 5 — T,
[p]et dy 5%88(8+1)2+k3i82 k’z

k;
C(S) = ; ; [1pt]7 Ger

|k > 1

(b) [1pt] wge =~ 0.675 rad/sec ; [1pt] ZL(iw,.) ~ —158°.
(c)

15



Bode Diagram
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Figure 3: Bode diagram of the closed-loop transfer function L(s) = C(s)P(s).
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Figure 4: Magnified picture of the Bode diagram of the loop transfer function L(s) =
C(s)P(s).

[1pt]

P =0 N =0, 2Z = N - P = 0, system asymptotically stable.

(d) [2pts] m, = 180° — 158° = 22°
(e) [2pts] Gain margin = my|,,; = 6dB < m, = 10310 ~ 2.

(f) (Bonus) k, > 10, hence C(s) = 10 [1 pt]; the new added gain is 20dB.
Hence the new wy. is estimated %y looking at the frequency @ where
|L(iw)|,5 = —20dB, i.e. wgenew = 2 rad/sec.[1 pt]

The new phase margin would be 180° — 220° = —40°, i.e. the system has
become unstable [1 pt].
A properly designed lag controller should lead to stability again. [1pt]
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